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Abstract

It has been shown by Kolpakov (1989) that the homogenization method must be applied directly to the initial body
in order to incorporate correctly the preliminary (initial) stresses if the body is non-homogeneous. In the paper men-
tioned above, this fact is noted and illustrated on examples. In the present paper, a complete analysis of the problem is
given. In particular, the case of small initial stresses (as compared with elastic constants) is considered. This is the case
realized in most natural and artificial stressed structures.

It was noted by Kolpakov (1992) that the realizing of the theoretical results represent an independent problem for
every type of definite structure. In the present paper, the method of incorporating the initial stresses in application to
finite-dimensional constructions (framework and semimonocoque constructions) is given. © 2001 Elsevier Science Ltd.
All rights reserved.
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1. Homogenization for stressed non-homogeneous media

Consider a non-homogeneous elastic body having a periodic structure, which has periodicity cell (PC) P,
(see Fig. 1). Here, ¢ < 1 denotes a characteristic dimension of the PC (see Fig. 1). The condition ¢ < 1 is
formalized as ¢ — 0.

The body is subjected to forces F, which cause stresses o7,(0), which are called the initial ones. In ap-
plying the additional forces f, the problem of deformation of a body having initial stresses appears.

The general description of a body with initial stresses has been considered in a book by Washizu (1982),
and the following problems have been derived for describing the basic (initial) state:

L.(0)v"=F in Q, 0;;(0)n; =0 on S U S, v=0onS$ (1.1)
and for determining the additional displacements,
L.(o)u* =1 in Q, oy (a)n; =0 on Sy US", u’' =0 on S,. (1.2)
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- the elastic material, |:| - the void,

— S -5,

Fig. 1. Elastic body of periodic structure and the periodicity cell.

Here, v¢ and w® are the initial and additional displacements, respectively; é; =1 and 6, = 0 if i # k;
ciu(x/¢) are the local elastic constants;

04(0) = ¢y (x/2) 00 /o, (1.3)
are the initial stresses;
0:(0) = (cyu(x/e) + 0,(0)8,) dut /Oy (1.4)

are the so-called additional stresses (Washizu, 1982); L.(0)u = 0/0x;[c;u(x/¢) Ouy/0xI] is the elasticity
theory operator without the initial stresses; L.(o)u = a/ax,[(c,jk,(x/ &) + 09,(0)3s) duy /0xl] is the elasticity
theory operator that incorporates the initial stresses; n® is the normal to S1 UsS® Sy, S, S¢ are presented at
Fig. 1, S means the surface of voids (if exist).

The functions c;x(x/¢), 07,(0)(x,x/¢) are periodic in x with PC P, according to the period of con-
struction.

Summation with respect to the repeating indices is assumed.

Note. The elastic constants ¢;; have well-known symmetries (in particular ¢; = ¢ and ¢ = cuij, See
Timoshenko and Goodier (1970)). Introducing By = cju + 05,(0)d%, we can write (1.4) in the form
0;;(0) = BijOu; /0x; [ and consider it as a constitutive equation for a stressed body. In contrast to the elastic
constants the quantities B;; do not have symmetries occurring to the elastic constants. This asymmetry
plays important role in the analysis of stressed inhomogeneous structures (Kolpakov, 1998, 2000).

1.1. Homogenization method as applied to stressed composites

It is known (Bensoussan et al., 1978) that the body as ¢ — 0 can be replaced by a homogeneous (referred
to as “homogenized”) body similar to it in mechanical behavior. Correspondingly, the solution of Egs. (1.1)
and (1.2) may be approximated by the solution of the so-called homogenized problems:
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L(0)y = pF in Q, 0;;(0)n; =0 on S, v=0onS,, (1.5)

L(o)u = uf in Q, o;(o)n; =0 on S, u=0onS9,. (1.6)
Here,

e vand u are the “homogenized” displacements (i.e., the displacements determined from the homogenized
problems);

o L(0)v = 0/0x;[a;;(0) Ov, /0x;] is the homogenized operator corresponding to Eq. (1.5);

o L(o)u=0/0x;{a;u (o) Ou;/0x] is the homogenized operator corresponding to Eq. (1.6);

e a,;4(0) are the coefficients of operator L(0) (these are the “homogenized” elastic constants of the body
with no initial stresses);

® a;(0) are the coefficients of operator L(o) (these are the “homogenized” constants of the body with ini-
tial stresses);

0,(0) = ayu(0) Ouy /Oxy;
;(0) = a;:(0) Oy /Oy

(-y = (mes Y)' J,, dy is the average value over the PC ¥ = ¢ 'P, = {y = x/&: x € P,} in the “fast” variables
y = x/& @ C Y is the subdomain of the periodicity cell Y occupied by the elastic material, I means the free
surface (if exists) in the “fast” variables (Fig. 1); u is the volume fraction of the material: u = mes ®/mes ¥
(u=1and & =Y for a monolithic body, and 0 < u < 1 for a porous one).

If f = p(x/e) 0w’ /0 (p(x/e) means the local density), one obtains the dynamical problem for stressed
structure. If f = w’p(x/¢)u’, one obtains the problem of free vibration of stressed structure. Here, p° is the
local density, respectively, in Eq. (1.6) F = 0, F = (p) 0*u/d#, and F = o*(p)u.

Numerous authors (Bakhvalov and Panasenko, 1989; Bensoussan et al., 1978; Kalamkarov and Kol-
pakov, 1997; Oleinik et al., 1990; Sanchez-Palencia, 1980 and references in these books) presented the
homogenization procedures for an elastic body with no initial stresses. The homogenization procedures for
the porous body were presented by Oleinik et al. (1990), Cioranescu and Saint Jean Paulin (1979), Lions
(1980).

In particular from the work of Oleinik et al. (1990), it is known that ,;(0) are equal to average value of
the initial stresses:

6,4(0) = (d7(0)) (1.7)

1.2. Computation of homogenized constants of a stressed body

To derive formulas for computing the homogenized constants of stressed body, we use the two-scale
asymptotic expansion method (Bakhvalov and Panasenko, 1989). We use the following expansions:
Expansion for displacements

o0

v =u?(x) +al(x,y) + - =u"(x) + > b (x,y), (1.8)

k=1

Expansion for stresses

(o) =Y dal) (x,y). (1.9)
k=0
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Here, x are the “slow” variables, and y = x/¢ are the “fast” variables. The functions in the right- hdnd
side of Egs. (1.8) and (1.9) are assumed to be periodic in y with periodicity cell Y. Note that the term u® (x)
in Eq. (1.8) depends on the “slow” variable x only.

With the use of two-scale expansion, the differential operators are presented in the form of sum of
operators in x and y. For the function Z(x,y) of the arguments x and y, as in the right-hand sides of Egs.
(1.8) and (1.9), this representation takes the form:

aZ/ﬁx,- = Z,ix + Silz,iy. (110)

Here and below ,ix means 0/0x; and ,iy means 0/0y;.
Substituting Egs. (1.8) and (1.9) into Eq. (1.4), we obtain with allowance for Eq. (1.10)

iskay Z&kB,,mn( m,,x-l—& ufnLy) k=0,1,..., (1.11)
=0
where
Bijmn = Cijmn + qin(())é,-m. (1.12)
Equating the terms with identical power of ¢ in Eq. (1.11), we obtain
o) = Bt + ButdD, k=0,1,... (1.13)
The equilibrium equation (Egs. (1.2) and (1.4)) may be written in the term of stresses:
0a},(0)/0x; = f; in O, o;(a)n; =0 on MRS (1.14)
Substituting (1.9) into the equilibrium equations (1.14), we obtain with allowance for (1.10)
iskal%x + iskila%y =f; in O, iskagf)n/ =0 on S, US“. (1.15)
=0 =0 =0
Equating the terms with identical power of ¢ in Eq. (1.15), we obtain an infinite sequence of equations:
o +a =f and o)+l =0 fork>0, o =0inY, om;=0onT
k=0,1,... (1.16)

Averaging Eq. (1.16) over the periodicity cell Y, we obtain an infinite sequence of the homogenized
equilibrium equations, the first of which is the following:

<a§.}’>>jx = uf;. (1.17)

Here, we use equality < = 0, which follows from the well-known formula:

1/ /y>

1 1
/ ,“de / ol(j)njdy+/a§j)njdy.
Y oY r

The first integral is equal to zero by virtue of periodicity ag}) and anti-periodicity vector-normal n. The

second integral is equal to zero by virtue of condition al(-; )nij =0onT.

Let us consider the problem (1.13, £ = 0), (1.16, £ = 0) which can be written as

(Bijmn(y) m,ny +B’I“(y) )r?)mf) v = 0 in Y7 (118)

(Bz:/mn()’) o+ Biu(y) n?)nx)"j =0onT. (1.19)
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Allowing for the fact that the function of the argument x plays the role of a parameter in the problems in
the variables y and u® depends on x, only, solution of the problem (1.18) and (1.19) with periodicity
conditions can be found in the form:

u®) = N (y)ul), () + V(x). (1.20)

Here, V(x) is an arbitrary function of the argument x, which does not influence the final equations, and the
periodic function N*(y) represents a solution of the following cellular problem:

(Bins (VNS + Ba(y)) =0'in ¥,

(1.21)

(Bijmn (Y)Ng e+ Bz:/kl()’))”j =0on/.

N¥(y) is periodic in y with the periodicity cell Y.
Substituting Eq. (1.20) into Eq. (1.13), we have

0} = (Bum (YINL,, + B (¥) ) (). (1.22)
Averaging Eq. (1.22) over the cell Y, we obtain the following homogenized constitutive equation:

(o)) = ayua(o)u (x), (1.23)
where

10(0) = (Binn (YNl + Byua(¥)) (1.24)

are called the homogenized characteristics of the stressed body.

The homogenized equilibrium equation (1.17), the homogenized constitutive equation (1.23) and the
boundary conditions,

u?(x) =0 on S, af/o)nj =0 on S, (1.25)
represent the homogenized problem for stressed body. Substituting Eq. (1.24) into Eq. (1.23), we can write
the homogenized problem in the form (1.6).

The fundamental difference of this problem from the homogenized problem for body having no initial
stresses is the dependence of the cellular problem (1.21) and the homogenized coefficients a;;,(o) of the
initial stresses.

Note, that in general case (Kolpakov, 1989, 1992)

aiji(0) # aiji(0) + 0;:(0)di. (1.26)

The right-hand side in Eq. (1.26) arises when one uses the so-called “intermediate” homogenization,
which is carried out as follows: one homogenizes the non-homogeneous body having no initial stresses and
calculates the stresses in it by solving the problem (1.5), and then one compiles an operator that should arise
in describing a real homogeneous body having those elastic constants and initial stresses in accordance with
the classical theory presented, e.g., in the book by Washizu (1982). The intermediate homogenization arises
in particular from a phenomenological approach to a non-homogeneous body. In this case, the experi-
mentally measured elastic constants are the homogenized ones. It follows from Eq. (1.26) that intermediate
homogenization in general leads to an incorrect result. Mathematically, this is due to the fact that the G
limit of a sum is not equal to the sum of G limits (Marcellini, 1975). From the mechanical viewpoint, it is
explained by the occurrence of a general state of local stress and strain when the uniform homogenized
stresses are applied to a non-homogeneous medium.
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2. Small initial stresses

These are naturally constraints on the initial stresses, i.e., o7;(0) will not exceed the strength limit of the
material. In turn, the strength limit for a real material is small by comparison with the elastic constants
(Timoshenko, 1955). Then, the initial stresses GU(O) are small compared with elastic constants ¢;;; and
values B;;; introduced by formula (1.12) may be presented as

Bijkl(xu Y) = cijkl(Y) + ,ubijkl(xa Y)a (2-1)

where p is a small parameter (4 ~ 0.01) and the following notation is used: by (x,y) = ¢7,(0)(x,y)d%. In
order to solve the cellular problem (1.21) with coefficients (2.1), classical method of small parameter can be
used. This method is based on presentation of solution of the cellular problem in the form:

Nkl(y) — NOkI(y) + le/ Z'quckl (22)

All the functions N**(y) are assumed to be periodic in y with the periodicity cell Y.
Substituting Eq. (2.2) into Eq. (1.21) and equating the terms with identical power of p, we obtain an
infinite sequence of problems, the first two of which have the following form:

(com IVl + euy) =0inY, (23)
(c,,.n,,,( N 4 c,-jk,(y))nj =0 onT, (2.4)
(c,;,-nm( Iy + byt (X,9) + bijua (x, )N, ny(y))_jy =0inY, (2.5)
(Ci/nm(y)Nm w + b (X, ) + by (x, y)Nr(r)lkrlzy(y))nj =0 on/. (2.6)

Problem (2.3) and (2.4) is the well-known cellular problem for a body with no initial stresses (Bensoussan
et al., 1978; Kalamkarov and Kolpakov, 1997; Oleinik et al., 1990; Sanchez-Palencia, 1980). We can obtain
the problem (2.3), (2.4) from the cellular problem (1.21), if we put By, = c;iy in (1.21).

Transform formula (1.24) to a quadratic functional. For that we change in Eq. (1.21) indices (ij <—— pgq),
then multiply the Eq. (1.21) by N; i/ and integrate by parts over the periodicity cell Y. As a result, we obtain
with allowance for periodicity of N and NP7 the following equality:

<BP‘I'W (y)NII:l[n1Nflvqu + qukl(x7 y)Np/qy> =0. (27)

Subtracting Eq. (2.7) from Eq. (1.24), we obtain with regard for definition By, (2.1) and symmetry
Cij = crii; the following formula:

aijkl(o-) = < pqmn( )]V;ln/ n}Np qy Bm”lj (X y)Nif;lny + BU’”" (X y)er;tlny + Bl/kl (X7 y)>
(2.8)

= < — Ppgnm (Y)]V)ln n}N;)dqy lubm’”](x y) m n} + lubljmn(x y)Nm ny + Bljkl(x y)>

Proposition 1. Let stresses a;; are periodic in'y with the periodicity cell Y and satisfy the following equations:
=0inY,o;n; =0 on F Then, ( Z,) = 0 for any function Z(y) periodic in'y with the periodicity cell

U Sy



A.G. Kolpakov | International Journal of Solids and Structures 38 (2001) 2469-2485 2475

To prove the Proposition 1, let us multiply the first equation by Z(y) and integrate the result by parts
over the cell Y. We have

0= / 0,2 jdy + / 0,,Zn;dy + / a;Zn;dy.
Y oYy r

The second integral is equal to zero by virtue of periodicity a;‘j(y) and Z(y) and anti-periodicity of the
vector-normal n. The third integral is equal to zero by virtue of the boundary condition.

Proposition 2. The initial stresses o;;(0) determined from solution of the elasticity problem (1.1) and (1.2)
satisfy the conditions of the Proposition 1.

To prove the proposition, we use the following well-known (Bakhvalov and Panasenko, 1989) repre-
sentation for the stresses:

73(0) = cuur(y) + (B0 (x) + N3 ()0 (x) ) (29)

where v is the solution of the homogenized problem (1.5).

Using Eq. (2.9), we obtain a7;, (0) = (cijr(¥) + Ciimn(Y)Nyr, (¥)) , vi1p(x). The right-hand side of this
equality is equal to zero (it is the left-hand side of the cellular equation for the body having no initial
stresses, see Eq. (1.21)).

From Eq. (2.9), we also have ¢7,(0)n; = (i1 (¥) + Cijmn(Y)N},, (¥) Umnx (X)) 10 1x(x). The right-hand side
of this equality is equal to zero (it is the left-hand side of the cellular boundary condition for the body
having no initial stresses, see Eq. (1.21)). The periodicity of ¢} ( ) in y follows from periodicity of ¢;ju.(y)
and N¥(y).

By virtue of Proposition 1, definition of b,;; and symmetry of the initial stresses afj(O) with respect to

indices i and j, we obtain
< m ny> = 07
0.

(s, = (o O Y

(2.10)
(BN, ) = (7 (OINE,, o =
From Egs. (2.8) and (2.10), we obtain
i (0) = < — By (V)N Ny, + B,,u>. (2.11)
Substituting decomposition (2.1) into formula (2.11) and saving only terms linear in u, we obtain
() = aa(0) + by (%, ¥)) + Ly ()] + -+ = apa(0) + e[ (3 (O)%,¥) ) + Lyu(@)] + -
= ;1 (0) + p[o;1(0) (X, ¥) i + Ly (0)] + -+ -, (2.12)
where
Lita () = (= BN N, = CoamNEL NI = a1, NI, (2.13)

Writing the last equality in Eq. (2.12), we use the equality (1.7). By resorting to problem (2.5) and (2.6), we
can take the opportunity to rule out functions N'* from Eq. (2.13).
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Multiplying Eq. (2.5) by N and integrating the result by parts over the cell ¥, we obtain with allowance
for periodicity of N% and N'¥ and the boundary condition (2.6)

(e (VNN + B (%, VNI + b (%, YINS, NI ) = 0. (2.14)

myny” iy iy myny” ijy

From Eq. (2.14), we have (after changing the indices ij «—— pgq)

(om ¥V N ) = =Byt (X YING, + B (X, YINSELNS ). (2.15)
In the same way, we have

(o (VNN = = by (%, YINDS, + By (%, YINSELNDE ). (2.16)

Substituting Egs. (2.15) and (2.16) into Eq. (2.13), we obtain

Lina () = (Bpana N NS, + b5, + BN 2, ). (2.17)
The following equalities takes place:
(B2, ) = 0 and (BusNY ) =0. (2.18)

The equalities (2.18) can be derived in a manner similar to one used to derive equalities (2.10). From Egs.
(2.17) and (2.18), we obtain

lijkl(a) = <qumnNr(i)zl,(rllyN1(7)Zy>' (2.19)
Substituting by, = 0%,(0)d;, in accordance with the definition (2.1), we obtain
L(0) = <agn(0)N§§§N,§g'y>. (2.20)

Note. The /3, (o) are expressed in terms of derivatives of N°# and cannot be expressed in terms of
deformations corresponding to N°# in the general case.

The formula (2.20) can be written in terms of the homogenized stresses. In accordance with Oleinik et al.
(1990), the local stresses in a body with no initial stresses are given by formula:

¢,(0) = cyua(x/2) (ek, + Ngqg(x/g)epq) = cyu(x/e) (5kp5,,, + N (x /s))Jpq,,,,,amﬂ(O), (2.21)

where e,, = 1/2(0v,/0x, + 0v,/0x,) are the homogenized strains and {J,m,} = ~{a,4jk1(0)}71 is the homo-
genized compliance tensor.

Substituting the last expression from Eq. (2.21) into Eq. (2.20) in place of oj;, we obtain the following
formula:

aijkl(o-) = aijkl(()) + ,u[ajl(o)éik + lijk/rs(o-)'lrxmnamn (0)] (222)
in which
Lt (7) = (CqeaN NSNS, + s NSND ) (2.23)

with summation with respect to the repeating subscripts.
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2.1. Elastic constants of a stressed body

It follows from Egs. (2.3) and (2.4) and the elastic-constants c¢;;,(y) symmetry that N/ is symmetrical
with respect to the superscripts. Then, the quantities /;;,(¢) have the symmetries occurring in the elastic
constants. It is known (Bensoussan et al., 1978; Sanchez-Palencia, 1980; Kalamkarov and Kolpakov, 1997)
that the homogenized coefficients a;;; (0) have the symmetries occurring in the elastic constants. Then, the
quantities

A (0) = ay(0) + pliju(o) (2.24)

have the symmetries occurring in the elastic constants and can be interpreted as the homogenized elastic
constants of stressed body.
In terms of the quantities A,;,(¢), the formula (2.12) can be written in the form:

aijia(0) = Aijia (0) + 10;1(0) i (2.25)

coinciding in form with the classical formula for homogeneous body having initial stresses (see e.g. Washizu
(1982) and compare with formula for L,(¢) above). Note that the so-introduced elastic constants A;;,(c) of
homogenized body depend on the initial stresses.

The initial stresses can exist both in homogeneous and non-homogeneous bodies. For homogeneous
body ¢ = const, and solution of cellular problem (2.3) and (2.4) N*=0. Then, li11(6) =0 in accordance
with Eq. (2.20). It is possible that N*/ =0 and then /;,(c) = 0 for a non-homogeneous body. It takes place in
the case when the local displacements coincide with the global displacements. Consequently, the effect
discovered arises in non-homogeneous bodies only (but not in any non-homogeneous body).

It is possible that the local stresses o7(0) #0 although the homogenized (averaged) stresses
;;(0) = (a;(0)) = 0. In this case, o};(0) are called “self-balanced” stresses. In this case, the homogenized
problem coincides with the elasticity problem for a body having no initial stresses and having elasticity
constants A4,;,(c) given by formula (2.24) (see Eqgs. (2.25) and (1.6) and formula for L(s) above). Conse-
quently, the self-balanced stresses can affect the homogenized characteristics of non-homogeneous body
and cannot affect the characteristics of homogeneous body.

The constructions considered in the following sections of the paper are the non-homogeneous bodies
(one component is material, the other component is voids) even made of homogeneous material. Both cases
li(0) equalling zero and not equalling zero can be realized for these. The examples will be given.

3. The stressed structures made of rectilinear or planar elements

We consider a construction of periodic structure formed of beams, plates, and rods. Such a structure is a
particular case of highly porous framework structure. In this case, Egs. (2.3) and (2.4) can be replaced as
proposed by Kolpakov (1985) by a cellular problem for the corresponding cellular constructions formed by
a system of beams and/or plates (Annin et al., 1993; Kalamkarov and Kolpakov, 1996, 1997).

The problem (2.3) and (2.4) can be considered as a problem with respect to U* = N* 4 vyep (the cellular
problem theory for beams/plates is formulated naturally in terms of U* in the sense that the kinematic
hypotheses link the displacements of the cellular construction elements to U*). One can rewrite Egs. (2.20)
and (2.22) in terms of U*:

1a(0) = (3,(0) (Uth, = 010 ) (Ul = 001 )- (3.1)

and correspondingly
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Fig. 2. (a) The periodicity cell ¥ formed by rods, (b) the beam L; and the vectors /, n, T of local coordinate system linked to the beam,
and (c) the directional vector / and the coordinate cosines (these are projections of the vector / on the coordinate axes.

Lijkirs(0) = <C'”Cd (dey - 5%’5-"(1) (U;If,[ty - 5kp5h> (U;i‘{qy - 511:51»1)
+ Cans (U;",}, - (skpa,,,,) (Ug’qy - 5ip5_i,,,) > (3.2)

The theory of beams/plates establishes a relation between the displacements of the elements (considered
as 1-D or 2-D objects) and U* (displacements of the elements considered as solid bodies) in the simplest
form in the natural coordinate system linked to the elements (Timoshenko and Woinowsky-Krieger, 1959;
Washizu, 1982; Haug et al., 1986). We introduce the {/,n,t}, coordinate system linked to body 7 (Fig. 2).
The vector /is the unit length direction vector for beams; n, the unit length normal vector; z, the unit length
vector perpendicular to /, n. For the planar structures {/,n}, system is used.

Let us denote by {7’ }, the directional cosines of {/,n,t}, coordinate basis vectors relative to the coor-
dinate system Oy,y,ys, i = 1,2,3; A = [,n,7 (Fig. 2). Applying the standard formulas for tensors trans-
formations when the coordinate system is changed (Washizu, 1982), one can rewrite formulas (3.1) and
(3.2) in a coordinate system linked to element as follows:

Lina(0) = (0 (O g, Ubg, = 77500s(0) Ul gy = 7i7h0% Ul + 775755035 (0)04n ) (33)
and
Lijkian (0) = <CQLCD (Uglny - 5ac5bD) (Uﬁfsy - 5kP5ls> (U};{Qy - 5iP5jQ)
+ V%VgcQLRS (Uﬁ,lSy — 5kP5/S) (U;;{Q}, — 51’P5(1'Q) > (34)

Here, the capital letter indices run through the values /, n, T and the small letter indices through values 1, 2,
3.
The average value over the PC Y in the present case is

(= ey [ ay

where N is the number of elements (beams and/or plates) in the cellular construction; the integration is
taken over the region L; occupied by the /th element /. The integrals can be calculated explicitly on the basis
of the hypotheses from beam/plate theory.
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In all the calculations below, structural elements made of isotropic materials will be considered. As a
result the stress tensor and strain tensor are co-axial.

3.1. Periodic beam structures
Consider a construction made of thin beams. We write the following formulas for the stresses in the

coordinate system linked to beam [ (the beam material is taken as homogeneous and isotropic, and the
beam has a constant cross-section):

,(0) #£0, 6 ,(0) =0 for AB # II. (3.5)

We represent Egs. (3.3) and (3.4) on the basis of Eq. (3.5) as
Lijs(0) = (mesY)~ Z / a0 Ufz Uy, y’ijUZ, — Y Us, + y’lmﬁyﬂ d/dndr. (3.6)

For the case under consideration ¢%,(0) = E; Ul‘fﬁ’vaﬁb (compare with Eq. (2.21)). E; is Young’s modulus of the
material of the /th beam. Then

Lijrsan(0) = (mesY) IZ /El U,’I?Uf[ Ui, UZ}[)(VAVIU +VA“/]U51>+U;11V1/1V;V;] d/dndr. (3.7)

The stresses and strains in Eq. (3.5) are the sum of stretching—compression strains and bending strains
and take the form 4 + Bn + Ct, where A,B,C = const. Then, one can calculate the expressions in Egs. (3.6)
and (3.7) by integrating functions of the form n*t*, K, L = integers, over the cross-section of the beam. An
example will be given below.

3.2. Periodic rod structures
Let the bending stresses and strains in the cellular construction be negligible. Then, the stresses

d5,(0) = Esefy and axial strains e’ = U} in Eqs. (3.5)~(3.7) are constants, and UJ, = 0 for 4 # [, so Egs.
(3.6) and (3.7) after integration become

N

Liws(0) = (mesY)™ > N [ef'e] —yiviel — vivlel +vivivilLs, (3.8)
=1
) N

Linan(0) = (mes Y)Y "ECi[ef el + € (Vyviel + vivie}’) + e viviivi] L (3.9)

I1=1

in which N, is the initial axial force (the initial axial stress ¢}, multiplied by the cross-section area C; of
the 7th rod), L; the length, and E; the tensional rigidity of the /th rod (Young’s modulus E; multiplied by
C)).

3.3. Semimonocoque constructions

Consider a construction made of thin rods and plates. Let the rod framework in a cellular construction
support all the tension/compression loads, while the plates support only shear loads (Washizu, 1982). The
rod framework was considered in Section 3.1. Now consider the plate shell. For plate subjected to shearing
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only, one can introduce a coordinate system linked to the plate in which o%,(0) = const for 4B =
In,nl, 6°5(0) =0 for AB # In,nl; U/ = I'"'n, U7 = I'I(I'"V is the shear strain).
As a result, for the plates formula (3.3) takes the form

M
Lirs(0) = (mes Y) ™ "S{ = (a7 + 0TV + il + i) + (Vi + et dar Ha.
I=1

(3.10)

Here, S; are the initial shearing forces (the initial shearing stresses o7, multiplied by the plate thickness) and
&, is the area of the Ith plate in plane. We use here that Ug, Uy, = 0 because Uy = U/, =UP, = U/, =0in

the case under consideration. The summation in (3.10) is taken over the number M of plates in the cellular
construction. One should add (3.10) to (3.7) or (3.8) to get the final expression for /..

4. Method solving the cellular problem

The most general method of determining N*f and U* is to solve Egs. (2.3) and (2.4) numerically.
However, if the cellular construction is formed by thin-walled elements, it is logical to use methods that
explicitly incorporate the thinwallness of the cellular construction elements. The approach proposed by
Kolpakov (1985) is one such method. The method proposed there involves replacing the cellular problem in
elasticity theory by the cellular problem in the theory of beams/plates and agrees with the analysis method
for finite-dimensional structures that has been thoroughly developed in the sense of theoretical analysis and
in the sense of software. We consider applying the last method to the cellular problem. We introduce the
generalized displacements of the cellular construction nodes (u;,my,...), in which uy, ... are the displace-
ments proper and my,... are the residual components of the generalized-displacement vector (e.g., the
angles of rotation for the ends of the beams and so on (Washizu, 1982; Haug et al., 1986). The finite-
dimensional cellular problem takes the form:

Tw* =0 at the interior nodes, (4.1)
(Tw”),. = (Tw”) _ at the boundary nodes, (4.2)
(W’ —y.e),, = (W’ —y.e5),  at the boundary nodes, (4.3)

N

N
> (W —yeg) =) mi’ =o0. (4.4)
I=1

I1=1

Here, Eq. (4.1) are the equations of equilibrium (T is the influence/stiffness matrix); Egs. (4.2) and (4.3) are
the periodicity conditions (the subscripts a+ and a— denote those corresponding one another at opposite
faces of the PC); Eq. (4.4) is the analog of (N*) = 0; N is the number of cellular construction elements; y,
e; takes the values at the nodes of the PC.

One solves Egs. (4.1)—(4.4), then recovers w* in the region occupied by the elements on the basis of the
kinematic hypothesis, and calculates /;, or /., in accordance with the above formulas. For typical
constructional elements, such as rods, beams and plates, one can obtain explicit expressions for /;;,, and
Lijrsmn in terms of the generalized displacements of the ends.

To calculate a;;,(0), one can apply the following formula for computing the homogenized elastic con-
stants presented in the book by Kalamkarov and Kolpakov (1997):
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aijm/f(o) = Z(Twaﬁ)w (45)
Gj

where G; means the set of nodes belonging to the cellular construction side perpendicular to Oy; axis.
To calculdte lir and L, which characterize the effects from the initial stresses in a finite-dimensional
structure, it is thus effective to use a matrix method.

5. Examples

Example 1. (working formulas for planar structure made of thin beams). The domain L, in the case under
consideration is [0, L;][—A;/2, h; /2] in the coordinate system {/, n} linked to the 7th beam. Under hypothesis
of non-deformable normal, the following relationship takes place:

U = v (1) — aw? (1), U = w(1), (5.1)
where w* is the normal deflection and v* is the axial displacement (in the local coordinate linking to the
beam), Ul“ﬁ is displacement in the beam considered as 2-D body, /is the coordinate along the beam axis. The
upper prime means derivative in the variable /.

Substituting Eq. (5.1) into Eq. (3.7) and integrating, one obtains

Lijsap(0) = (mes Y) 1X:E, irsan (O (5.2)

where

ljmab

/ {J Uah/ rs! 1]/ r?/ lj/ + Urv/ ijl +er/ 1]/)

—|—J[ ab//( sl lj/+er/ t///+wrrl tj//+wrv// lj/)+Uab/ sl U”} }dl
/ {J Uah/ yrvlj/ ,erlj/) 4 y/(,yllviv/ 4 ,yn rv/)] _|_J2Wab// [,));,yil'wij// =+ '))lf/;”/w} }dl

—|—yl/§y,y,/ Jov™'dl. (5.3)
0

Here,

h/2
Jk:/ I’lkdl’l, k:1,2,3 (J1:J3:O, J():h, J2:h2/12)
—h/2
In Eq. (5.3) integrals are over the /th beam axis [0,L] and & means the thickness of the /th beam (the index /
is omitted here).

Note. Although strain state in a beam has a simple form, the formula (5.3) is rather complex. It is
connected with the fact that the /. (o) are expressed in terms of derivatives of N*/ and cannot be ex-
pressed in terms of deformations corresponding N*/, see Section 2.2.

Let us consider the cellular construction which consists of a beam. It is known (Washizu, 1982; Haug
et al., 1986) that

v=uv_+ vy —v )l/L, w=w_+¢ [ +AP + B,

where

A=2wy —w)/L = (b, +¢)/L7,  A=3(w. —w.)/L*— (¢, + ¢ )/L.
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Here, (v, v_, wy, w_, ¢, ¢_) are the axial displacements, deflections, and turning angles of the beam —
the generalized displacements of the beam ends (see Section 4). Substituting these equations into Eq. (5.3)
and calculating the integrals (these can be calculated in the explicit form here), one can obtain an expression
for L (o) through the (vi,v_,wy,w_, ¢, ¢_).

Example 2. (working formulas for planar structure made of rods). To obtain the formulas for the rod
structure, one can use relationship (5.1) setting w = 0. the formulas for calculating /;.»(¢) can be obtained
from Eq. (5.2) and these are the following:

l]”ab ZElhlAt]rsub (54)

where
A;I]rvab( ) — (vablvrs/vzjl ab/ (VI}V;.UM V?V? lj/) Vﬂ’]“/;/; ab/) (5.5)

Here, we use the fact that the integrated functions are constants. Here, L; means the length and /4; means
the thickness of the Ith rod. As above, v = v_ + (v, —v_)I/L, then v’ = (v, — v_)/L. Here, (v,,v_) are the
axial displacements of the beam ends (see Section 4). Substituting these equations into Eq. (5.5), one can
obtain expression of A (o) through the (v, v_).

Example 3. (X-shaped PC). Let us consider the planar structure with X-shaped PC (Fig. 3). The solution of
the cellular problem for the beam cellular construction shown in Fig. 3 can be obtained in an explicit form.
We use the symmetry of the cellular construction and consider one beam (1/4 of the cellular construction)
indicated at the Fig. 3 as L,. To derive U'!, one needs to solve the bending-tension problem for that beam:
" =0, w"” =0, subjected to the edge conditions: v(0) = w(0) =w'(0) =0, v(v2)=1/v2, w(2) =
—1/+/2, w(v/2) = 0 in which w is the normal deflection and v is the axial displacement in the local coor-
dinate linking to the beam, with the coordinate / reckoned from zero (the center of the cellular construction)
and v/2 the beam length. Solving the problem, one obtains

v=—1/2v2,  w=—P/2+3/2V2. (5.6)
Applying formula (4.5), one can calculate the homogenized elastic characteristics:
a1111(0) :E/2\/§+3D, a2211(0) :E/Z\/§—3D (57)
L

Fig. 3. X-shaped periodicity cell and the local coordinate system linking to the beam L.
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X

2

Fig. 4. Rectangular periodicity cell.

In Virtue, the symmetry of PC dai = anii, A»n = 4diill-

Some change in the method given by Kolpakov (1985) is needed to link up the elements at the faces of
the PC that appear in two faces at once (Fig. 3). In the present case, by virtue of the cellular construction
symmetry, the vectors for the normal faces are normal to the faces of the PC and Eq. (4.5) gives

aini(0) = (N + Q)/V2 =E+ 12D, 58
alm(O):(N—Q)/\/E:E—lZD '

(E = Eh and D = ER*/12(1 —?) are the rigidities of the beam in tension and bending while N and Q are
the axial and shearing forces). Due to the symmetry of PC, a2 (0) = a112(0), ax11(0) = a1122(0).
Substituting Eq. (5.6) into Eqgs. (5.2) and (5.3) with ab = rs = ij = 11, one obtains

V2
1111111(0') = 4E/ 1/2(J0 —‘y—Jz)(W/)zdl = 4(J() +J2)E\/i/15

Using the cellular construction symmetry one can find that N2 = N/!, N2 = —N!! and /);;1»2(0) =
4(Jo + J)EV2/15.

Let the homogenized (averaged) stresses be a1y # 0, 0, =0 for mn # 11(a,, means 0;(0) = (0}, as
above, see Eq. (1.7)). Applying Egs. (5.7) and (5.8), we calculate the homogenized compliance tensor:
Ji1(0) = (4v2/15)(E + 12D) /24ED, Jo1,(0) = (4v/2/15)(E + 12D) /24ED, J;;11(0) = 0 for ij # 11, 22.

Finally, for this case we obtain

ain (0) = E + 12D + [(Jo + J2)V2(E + 12D) /90D + 1]o;,
ann(a) = E + 12D + [(Jo +J2)V2(E + 12D)/90D] a1, (5.9)

a2 (0) = E + 12D + [(Jo + J2)V2(E + 12D) /90D]a, (Jo = h,J> = h*/12).

The last equation follows from the cellular construction symmetry.
Intermediate homogenization will give the following values for aj111(0), a1122(0), axn(0):

E+ 12D+ o1,E — 12D, E + 12D. (5.10)

The discrepancies between Eqs. (5.9) and (5.10) are of the order of ZE/D. The quantity hE/D is of the
order 4!, where / is small. Thus, this quantity can take a large value.
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Example 4. (rectangular PC, Fig. 4). Consider the cellular construction shown at Fig. 4. Let the homo-
genized (averaged) load be applied in such way that only the ¢%,(0) is not equal to zero (e.g. the weight).
Solutions of cellular problem for af = 11,22 are the following: v = y,es, w*¥ = 0. The local displacements
coincide with the global displacements. Then, in accordance with the point 2.2 /;;,(c) = 0.

6. Conclusions

1. The homogenization method must be applied directly to the initial structure in order to incorporate
correctly the preliminary (initial) stresses if the body is non-homogeneous. Application of the direct analog
of the classical theory to non-homogeneous body in general leads to an incorrect result. This conclusion
concerns directly the engineering structures, which are non-homogeneous (solid-void) bodies.

2. If the initial stresses are small by comparison with the elastic constants then the first-order corrector in
the homogenized constitutive equation can be computed using solution of the cellular problem for the body
with no initial stresses.

3. The homogenized constitutive equation of a stressed composite body can be written in a form co-
inciding in form with the classical formula for stressed homogeneous body. In this representation, the term
corresponding to the elastic constants depend on initial stresses. In particular, self-balanced inner stresses
can affect the homogenized constants of non-homogeneous body.

4. The problem of incorporating the initial stresses represents an independent problem for every type of
definite structure. In the present paper, the method of incorporating the initial stresses in application to
finite-dimensional (framework and semimonocoque) constructions is given. The method proposed in the
paper involves replacing the cellular problem in elasticity theory by the cellular problem in the theory of
beams/plates and agrees with the analysis method for finite-dimensional structures that has been thor-
oughly developed in the sense of theoretical analysis and in the sense of software.

5. The working formulas are derived for stressed structures formed the basic types of structural elements:
beams, rods and plates. The formulas derived here under condition that the initial stresses are small by
comparison with the elastic constants are applicable for most engineering structures.
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